Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
MAbs ; 15(1): 2220150, 2023.
Article in English | MEDLINE | ID: covidwho-20233533

ABSTRACT

The COVID-19 pandemic highlighted the urgent need for life-saving treatments, including vaccines, drugs, and therapeutic antibodies, delivered at unprecedented speed. During this period, recombinant antibody research and development cycle times were substantially shortened without compromising quality and safety, thanks to prior knowledge of Chemistry, Manufacturing and Controls (CMC) and integration of new acceleration concepts discussed below. Early product knowledge, selection of a parental cell line with appropriate characteristics, and the application of efficient approaches for generating manufacturing cell lines and manufacturing drug substance from non-clonal cells for preclinical and first-in-human studies are key elements for success. Prioritization of established manufacturing and analytical platforms, implementation of advanced analytical methods, consideration of new approaches for adventitious agent testing and viral clearance studies, and establishing stability claim with less real-time data are additional components that enable an accelerated successful gene to clinical-grade material development strategy.


Subject(s)
COVID-19 , Pandemics , Humans , Recombinant Proteins/therapeutic use
3.
Pharmacotherapy ; 43(3): 196-204, 2023 03.
Article in English | MEDLINE | ID: covidwho-2253213

ABSTRACT

STUDY OBJECTIVE: Thromboelastography (TEG) offers a more dynamic assessment of hemostasis over activated partial thromboplastin time (aPTT). However, the clinical utility of TEG in monitoring bivalirudin during extracorporeal membrane oxygenation (ECMO) remains unknown. The purpose of this study was to evaluate the correlation between aPTT and TEG in adult ECMO patients anticoagulated with bivalirudin. DESIGN: Multicenter, retrospective, cohort study conducted over a 2-year period. SETTING: Two academic university medical centers (Banner University Medical Center) in Phoenix and Tucson, AZ. PATIENTS: Adult patients requiring ECMO and bivalirudin therapy with ≥1 corresponding standard TEG and aPTT plasma samples drawn ≤4 h of each other were included. The primary endpoint was to determine the correlation coefficient between the standard TEG reaction (R) time and bivalirudin aPTT serum concentrations. MEASUREMENTS AND MAIN RESULTS: A total of 104 patients consisting of 848 concurrent laboratory assessments of R time and aPTT were included. A moderate correlation between TEG R time and aPTT was demonstrated in the study population (r = 0.41; p < 0.001). Overall, 502 (59.2%) concurrent assessments of TEG R time and aPTT values showed agreement on whether they were sub-, supra-, or therapeutic according to the institution's classification for bivalirudin. The 42.2% (n = 271/642) discordant TEG R times among "therapeutic" aPTT were almost equally distributed between subtherapeutic and supratherapeutic categories. CONCLUSIONS: Moderate correlation was found between TEG R time and aPTT associated with bivalirudin during ECMO in critically ill adults. Further research is warranted to address the optimal test to guide clinical decision-making for anticoagulation dosing in ECMO patients.


Subject(s)
Extracorporeal Membrane Oxygenation , Thrombelastography , Humans , Adult , Partial Thromboplastin Time , Heparin , Anticoagulants/therapeutic use , Retrospective Studies , Cohort Studies , Critical Illness/therapy , Hirudins , Peptide Fragments , Recombinant Proteins/therapeutic use
4.
PLoS Pathog ; 18(9): e1010799, 2022 09.
Article in English | MEDLINE | ID: covidwho-2021983

ABSTRACT

The binding of the SARS-CoV-2 spike to angiotensin-converting enzyme 2 (ACE2) promotes virus entry into the cell. Targeting this interaction represents a promising strategy to generate antivirals. By screening a phage-display library of biosynthetic protein sequences build on a rigid alpha-helicoidal HEAT-like scaffold (named αReps), we selected candidates recognizing the spike receptor binding domain (RBD). Two of them (F9 and C2) bind the RBD with affinities in the nM range, displaying neutralisation activity in vitro and recognizing distinct sites, F9 overlapping the ACE2 binding motif. The F9-C2 fusion protein and a trivalent αRep form (C2-foldon) display 0.1 nM affinities and EC50 of 8-18 nM for neutralization of SARS-CoV-2. In hamsters, F9-C2 instillation in the nasal cavity before or during infections effectively reduced the replication of a SARS-CoV-2 strain harbouring the D614G mutation in the nasal epithelium. Furthermore, F9-C2 and/or C2-foldon effectively neutralized SARS-CoV-2 variants (including delta and omicron variants) with EC50 values ranging from 13 to 32 nM. With their high stability and their high potency against SARS-CoV-2 variants, αReps provide a promising tool for SARS-CoV-2 therapeutics to target the nasal cavity and mitigate virus dissemination in the proximal environment.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 Drug Treatment , Recombinant Fusion Proteins , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
5.
Blood Coagul Fibrinolysis ; 33(6): 342-347, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-2001485

ABSTRACT

Immunosuppressive treatment and bypassing agents are used to treat acquired haemophilia A (AHA). On the other hand, COVID-19 infection induces a hypercoagulable state. Managing bleeding, risk of thrombosis, bypassing agents, active infection and immunosuppressive treatment can be challenging. A 72-year-old man was diagnosed with acquired hemophilia A. He received steroids, rituximab and recombinant activated factor VII (rFVIIa). He developed severe SARS-CoV-2 infection. Due to thrombotic risk, he received low-molecular-weight heparin (LMWH) and developed an iliopsoas hematoma. Because of the risk of thrombosis, treatment with recombinant porcine FVIII (rpFVIII) was requested. Tocilizumab was administered for treatment of SARS-CoV-2 infection and unexpected improvement of FVIII levels was noted. Concluding, rpFVIII treatment was well tolerated and effective, easy to monitor and to administer. Tocilizumab may play a role as immunosuppressive treatment for AHA. The role of LMWH remains to be established in patients with coagulopathies.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Hemophilia A , Pneumonia , Animals , COVID-19/complications , Factor VIII/therapeutic use , Hemophilia A/complications , Hemophilia A/drug therapy , Heparin, Low-Molecular-Weight/therapeutic use , Humans , Male , Pneumonia/complications , Recombinant Proteins/therapeutic use , SARS-CoV-2 , Swine
6.
ASAIO J ; 68(7): 920-924, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1967929

ABSTRACT

Extracorporeal membrane oxygenation (ECMO) contributes to coagulopathy, necessitating systemic anticoagulation to prevent thrombosis. Traditionally, unfractionated heparin (UFH) has been the anticoagulant of choice, however, due to many inadequacies new evidence suggests benefit with the use of direct thrombin inhibitors. This retrospective cohort sought to evaluate the safety and efficacy of bivalirudin compared to UFH in ECMO patients. Primary endpoints included incidence of bleeding and thrombosis. Percent time in therapeutic range (TR), time to achieve TR and number of dose titrations required to maintain TR were calculated to assess efficacy of institutional protocols. Overall incidence of thrombosis was low, with one event in the bivalirudin group and no events in the UFH group. No difference was found in rates of bleeding between groups (6% vs . 10%, P = 0.44). Bivalirudin yielded higher percent time in TR (86% vs. 33%, P < 0.001), faster time to TR (2 vs . 18 hr, P < 0.001) and required fewer dose adjustments to maintain TR (2 vs . 11, P < 0.001) compared to UFH. These results suggest bivalirudin and UFH are associated with similar rates of bleeding and thrombosis in patients requiring ECMO support. Our results demonstrate the favorable pharmacokinetic profile of bivalirudin, and its ability to consistently maintain TR when compared to UFH.


Subject(s)
Extracorporeal Membrane Oxygenation , Thrombosis , Adult , Anticoagulants/adverse effects , Anticoagulants/therapeutic use , Antithrombins/therapeutic use , Extracorporeal Membrane Oxygenation/adverse effects , Fibrinolytic Agents/therapeutic use , Hemorrhage/chemically induced , Hemorrhage/complications , Hemorrhage/prevention & control , Heparin/adverse effects , Heparin/therapeutic use , Hirudin Therapy , Hirudins/adverse effects , Humans , Peptide Fragments/adverse effects , Peptide Fragments/therapeutic use , Recombinant Proteins/adverse effects , Recombinant Proteins/therapeutic use , Retrospective Studies , Thrombosis/drug therapy , Thrombosis/etiology , Thrombosis/prevention & control , Treatment Outcome
7.
Crit Care ; 26(1): 171, 2022 06 09.
Article in English | MEDLINE | ID: covidwho-1951302

ABSTRACT

BACKGROUND: SARS-CoV-2 infection leads to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Both clinical data and animal experiments suggest that the renin-angiotensin system (RAS) is involved in the pathogenesis of SARS-CoV-2-induced ALI. Angiotensin-converting enzyme 2 (ACE2) is the functional receptor for SARS-CoV-2 and a crucial negative regulator of RAS. Recombinant ACE2 protein (rACE2) has been demonstrated to play protective role against SARS-CoV and avian influenza-induced ALI, and more relevant, rACE2 inhibits SARS-CoV-2 proliferation in vitro. However, whether rACE2 protects against SARS-CoV-2-induced ALI in animal models and the underlying mechanisms have yet to be elucidated. METHODS AND RESULTS: Here, we demonstrated that the SARS-CoV-2 spike receptor-binding domain (RBD) protein aggravated lipopolysaccharide (LPS)-induced ALI in mice. SARS-CoV-2 spike RBD protein directly binds and downregulated ACE2, leading to an elevation in angiotensin (Ang) II. AngII further increased the NOX1/2 through AT1R, subsequently causing oxidative stress and uncontrolled inflammation and eventually resulting in ALI/ARDS. Importantly, rACE2 remarkably reversed SARS-CoV-2 spike RBD protein-induced ALI by directly binding SARS-CoV-2 spike RBD protein, cleaving AngI or cleaving AngII. CONCLUSION: This study is the first to prove that rACE2 plays a protective role against SARS-CoV-2 spike RBD protein-aggravated LPS-induced ALI in an animal model and illustrate the mechanism by which the ACE2-AngII-AT1R-NOX1/2 axis might contribute to SARS-CoV-2-induced ALI.


Subject(s)
Acute Lung Injury , Angiotensin-Converting Enzyme 2 , COVID-19 , Respiratory Distress Syndrome , Acute Lung Injury/prevention & control , Acute Lung Injury/virology , Angiotensin II , Angiotensin-Converting Enzyme 2/therapeutic use , Animals , COVID-19/complications , Humans , Lipopolysaccharides , Mice , Recombinant Proteins/therapeutic use , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
8.
Curr Microbiol ; 79(6): 167, 2022 Apr 23.
Article in English | MEDLINE | ID: covidwho-1802672

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread all over the world and became a pandemic that named coronavirus disease-2019 (COVID-19). At present, several intramuscular vaccines have been successfully developed and mass vaccination has progressed in many countries. The aim of the study is to develop and examine an oral vaccine against COVID-19 with recombinant Lactococcus lactis IL1403, a strain of lactic acid bacteria, expressing SARS-CoV-2 spike (S) protein receptor-binding domain (RBD) S1 subunit as an immunizing antigen. PBS or cell extracts from recombinant L. lactis were orally administered into mice (control VS treatment), and formation of antigen-specific antibodies and changes in the gut microbiome were analyzed. Intracellular antigen was detected, but its secretion was not successful. After immunization, antigen-specific serum IgG and fecal IgA levels were 1.5-fold (P = 0.002) and 1.4-fold (P = 0.016) higher in the immunized mice (treatment) than control, respectively. Gut microbiome profiles were clearly separated between the two groups when analyzed for beta diversity with overall similarity. At the genus level, while Coprococcus (P = 0.036) and unclassified genus of Ruminococcaceae (P = 0.037) in treatment were more abundant than control, rc4-4 (P = 0.013) and Stenotrophomonas (P = 0.021) were less abundant. Our results indicate that cell extract containing SARS-CoV-2 antigen can induce mice to produce antigen-specific antibodies without overall changes in the gut microbiome. This strategy may be useful for the development of other oral viral vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Cell Extracts , Humans , Immunization , Lactococcus lactis/genetics , Mice , Mice, Inbred BALB C , Recombinant Proteins/immunology , Recombinant Proteins/therapeutic use , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
9.
J Cardiothorac Vasc Anesth ; 36(8 Pt B): 2961-2967, 2022 08.
Article in English | MEDLINE | ID: covidwho-1795642

ABSTRACT

OBJECTIVES: To compare heparin-based anticoagulation and bivalirudin-based anticoagulation within the context of critically ill patients with a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. DESIGN: An observational study. SETTING: At the intensive care unit of a university hospital. PARTICIPANTS AND INTERVENTIONS: Critically ill patients with a SARS-CoV-2 infection receiving full anticoagulation with heparin or bivalirudin. MEASUREMENTS AND MAIN RESULTS: Twenty-three patients received full anticoagulation with bivalirudin and 60 with heparin. Despite patients in the bivalirudin group having higher mortality risk scores (SAPS II 60 ± 16 v 39 ±7, p < 0.001) and a higher need for extracorporeal support compared to the heparin group, hospital mortality was comparable (57% v 45, p = 0.3). No difference in thromboembolic complications was observed, and bleeding events were more frequent in patients treated with bivalirudin (65% v 40%, p = 0.01). Similar results were confirmed in the subgroup analysis of patients undergoing intravenous anticoagulation; in addition to comparable thrombotic complications occurrence and thrombocytopenia rate, however, no difference in the bleeding rate was observed (65% v 35%, p = 0.08). CONCLUSIONS: Although heparin is the most used anticoagulant in the intensive care setting, bivalirudin-based anticoagulation was safe and effective in a cohort of critically ill patients with SARS-CoV-2. Bivalirudin may be given full consideration as an anticoagulation strategy for critically ill patients with SARS-CoV-2, especially in those with thrombocytopenia and on extracorporeal support.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Thrombocytopenia , Anticoagulants , Antithrombins/therapeutic use , COVID-19/complications , Critical Illness/therapy , Extracorporeal Membrane Oxygenation/methods , Fibrinolytic Agents , Hemorrhage/chemically induced , Heparin/adverse effects , Hirudins , Humans , Recombinant Proteins/therapeutic use , Retrospective Studies , SARS-CoV-2 , Thrombocytopenia/chemically induced
10.
Clin Infect Dis ; 74(4): 567-574, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1699244

ABSTRACT

BACKGROUND: Neutropenia is commonly encountered in cancer patients. Recombinant human granulocyte colony-stimulating factor (G-CSF, filgrastim), a cytokine that initiates proliferation and differentiation of mature granulocytes, is widely given to oncology patients to counteract neutropenia, reducing susceptibility to infection. However, the clinical impact of neutropenia and G-CSF use in cancer patients with coronavirus disease 2019 (COVID-19) remains unknown. METHODS: An observational cohort of 379 actively treated cancer patients with COVID-19 was assembled to investigate links between concurrent neutropenia and G-CSF administration on COVID-19-associated respiratory failure and death. These factors were encoded as time-dependent predictors in an extended Cox model, controlling for age and underlying cancer diagnosis. To determine whether the degree of granulocyte response to G-CSF affected outcomes, the degree of response to G-CSF, based on rise in absolute neutrophil count (ANC) 24 hours after growth factor administration, was also incorporated into a similar Cox model. RESULTS: In the setting of active COVID-19 infection, outpatient receipt of G-CSF led to an increased number of hospitalizations (hazard ratio [HR]: 3.54, 95% confidence interval [CI]: 1.25-10.0, P value: .017). Furthermore, among inpatients, G-CSF administration was associated with increased need for high levels of oxygen supplementation and death (HR: 3.56, 95% CI: 1.19-10.2, P value: .024). This effect was predominantly seen in patients that exhibited a high response to G-CSF based on their ANC increase post-G-CSF administration (HR: 7.78, 95% CI: 2.05-27.9, P value: .004). CONCLUSIONS: The potential risks versus benefits of G-CSF administration should be considered in neutropenic cancer patients with COVID-19, because G-CSF administration may lead to worsening clinical and respiratory status.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Neoplasms , Neutropenia , COVID-19/complications , Filgrastim/therapeutic use , Granulocyte Colony-Stimulating Factor/therapeutic use , Humans , Neoplasms/complications , Neoplasms/drug therapy , Neutropenia/complications , Neutropenia/drug therapy , Recombinant Proteins/therapeutic use , SARS-CoV-2
11.
Front Immunol ; 12: 838082, 2021.
Article in English | MEDLINE | ID: covidwho-1674340

ABSTRACT

Recombinant antibodies such as nanobodies are progressively demonstrating to be a valid alternative to conventional monoclonal antibodies also for clinical applications. Furthermore, they do not solely represent a substitute for monoclonal antibodies but their unique features allow expanding the applications of biotherapeutics and changes the pattern of disease treatment. Nanobodies possess the double advantage of being small and simple to engineer. This combination has promoted extremely diversified approaches to design nanobody-based constructs suitable for particular applications. Both the format geometry possibilities and the functionalization strategies have been widely explored to provide macromolecules with better efficacy with respect to single nanobodies or their combination. Nanobody multimers and nanobody-derived reagents were developed to image and contrast several cancer diseases and have shown their effectiveness in animal models. Their capacity to block more independent signaling pathways simultaneously is considered a critical advantage to avoid tumor resistance, whereas the mass of these multimeric compounds still remains significantly smaller than that of an IgG, enabling deeper penetration in solid tumors. When applied to CAR-T cell therapy, nanobodies can effectively improve the specificity by targeting multiple epitopes and consequently reduce the side effects. This represents a great potential in treating malignant lymphomas, acute myeloid leukemia, acute lymphoblastic leukemia, multiple myeloma and solid tumors. Apart from cancer treatment, multispecific drugs and imaging reagents built with nanobody blocks have demonstrated their value also for detecting and tackling neurodegenerative, autoimmune, metabolic, and infectious diseases and as antidotes for toxins. In particular, multi-paratopic nanobody-based constructs have been developed recently as drugs for passive immunization against SARS-CoV-2 with the goal of impairing variant survival due to resistance to antibodies targeting single epitopes. Given the enormous research activity in the field, it can be expected that more and more multimeric nanobody molecules will undergo late clinical trials in the next future. Systematic Review Registration.


Subject(s)
Single-Domain Antibodies/chemistry , Single-Domain Antibodies/therapeutic use , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Communicable Diseases/immunology , Communicable Diseases/therapy , Humans , Immunomodulation , Molecular Imaging , Molecular Targeted Therapy , Neoplasms/diagnostic imaging , Neoplasms/immunology , Neoplasms/therapy , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Recombinant Proteins/therapeutic use , Single-Domain Antibodies/immunology
12.
Lancet ; 399(10323): 461-472, 2022 01 29.
Article in English | MEDLINE | ID: covidwho-1641748

ABSTRACT

BACKGROUND: A range of safe and effective vaccines against SARS CoV 2 are needed to address the COVID 19 pandemic. We aimed to assess the safety and efficacy of the COVID-19 vaccine SCB-2019. METHODS: This ongoing phase 2 and 3 double-blind, placebo-controlled trial was done in adults aged 18 years and older who were in good health or with a stable chronic health condition, at 31 sites in five countries (Belgium, Brazil, Colombia, Philippines, and South Africa). The participants were randomly assigned 1:1 using a centralised internet randomisation system to receive two 0·5 mL intramuscular doses of SCB-2019 (30 µg, adjuvanted with 1·50 mg CpG-1018 and 0·75 mg alum) or placebo (0·9% sodium chloride for injection supplied in 10 mL ampoules) 21 days apart. All study staff and participants were masked, but vaccine administrators were not. Primary endpoints were vaccine efficacy, measured by RT-PCR-confirmed COVID-19 of any severity with onset from 14 days after the second dose in baseline SARS-CoV-2 seronegative participants (the per-protocol population), and the safety and solicited local and systemic adverse events in the phase 2 subset. This study is registered on EudraCT (2020-004272-17) and ClinicalTrials.gov (NCT04672395). FINDINGS: 30 174 participants were enrolled from March 24, 2021, until the cutoff date of Aug 10, 2021, of whom 30 128 received their first assigned vaccine (n=15 064) or a placebo injection (n=15 064). The per-protocol population consisted of 12 355 baseline SARS-CoV-2-naive participants (6251 vaccinees and 6104 placebo recipients). Most exclusions (13 389 [44·4%]) were because of seropositivity at baseline. There were 207 confirmed per-protocol cases of COVID-19 at 14 days after the second dose, 52 vaccinees versus 155 placebo recipients, and an overall vaccine efficacy against any severity COVID-19 of 67·2% (95·72% CI 54·3-76·8), 83·7% (97·86% CI 55·9-95·4) against moderate-to-severe COVID-19, and 100% (97·86% CI 25·3-100·0) against severe COVID-19. All COVID-19 cases were due to virus variants; vaccine efficacy against any severity COVID-19 due to the three predominant variants was 78·7% (95% CI 57·3-90·4) for delta, 91·8% (44·9-99·8) for gamma, and 58·6% (13·3-81·5) for mu. No safety issues emerged in the follow-up period for the efficacy analysis (median of 82 days [IQR 63-103]). The vaccine elicited higher rates of mainly mild-to-moderate injection site pain than the placebo after the first (35·7% [287 of 803] vs 10·3% [81 of 786]) and second (26·9% [189 of 702] vs 7·4% [52 of 699]) doses, but the rates of other solicited local and systemic adverse events were similar between the groups. INTERPRETATION: Two doses of SCB-2019 vaccine plus CpG and alum provides notable protection against the entire severity spectrum of COVID-19 caused by circulating SAR-CoV-2 viruses, including the predominating delta variant. FUNDING: Clover Biopharmaceuticals and the Coalition for Epidemic Preparedness Innovations.


Subject(s)
Adjuvants, Immunologic/therapeutic use , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/therapeutic use , Adolescent , Adult , Aged , Alum Compounds/therapeutic use , Belgium , Brazil , Colombia , Double-Blind Method , Female , Humans , Male , Middle Aged , Oligodeoxyribonucleotides/therapeutic use , Philippines , Protein Multimerization , Recombinant Proteins/therapeutic use , Risk , SARS-CoV-2 , South Africa , Vaccine Efficacy , Young Adult
13.
Microbiol Spectr ; 10(1): e0052221, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1622001

ABSTRACT

Heme-containing peroxidases are widely distributed in the animal and plant kingdoms and play an important role in host defense by generating potent oxidants. Myeloperoxidase (MPO), the prototype of heme-containing peroxidases, exists in neutrophils and monocytes. MPO has a broad spectrum of microbial killing. The difficulty of producing MPO at a large scale hinders its study and utilization. This study aimed to overexpress recombinant human MPO and characterize its microbicidal activities in vitro and in vivo. A human HEK293 cell line stably expressing recombinant MPO (rMPO) was established as a component of this study. rMPO was overexpressed and purified for studies on its biochemical and enzymatic properties, as well as its microbicidal activities. In this study, rMPO was secreted into culture medium as a monomer. rMPO revealed enzymatic activity similar to that of native MPO. rMPO, like native MPO, was capable of killing a broad spectrum of microorganisms, including Gram-negative and -positive bacteria and fungi, at low nM levels. Interestingly, rMPO could kill antibiotic-resistant bacteria, making it very useful for treatment of nosocomial infections and mixed infections. The administration of rMPO significantly reduced the morbidity and mortality of murine lung infections induced by Pseudomonas aeruginosa or methicillin-resistant Staphylococcus aureus. In animal safety tests, the administration of 100 nM rMPO via tail vein did not result in any sign of toxic effects. Taken together, the data suggest that rMPO purified from a stably expressing human cell line is a new class of antimicrobial agents with the ability to kill a broad spectrum of pathogens, including bacteria and fungi with or without drug resistance. IMPORTANCE Over the past 2 decades, more than 20 new infectious diseases have emerged. Unfortunately, novel antimicrobial therapeutics are discovered at much lower rates. Infections caused by resistant microorganisms often fail to respond to conventional treatment, resulting in prolonged illness, greater risk of death, and high health care costs. Currently, this is best seen with the lack of a cure for coronavirus disease 2019 (COVID-19). To combat such untreatable microorganisms, there is an urgent need to discover new classes of antimicrobial agents. Myeloperoxidase (MPO) plays an important role in host defense. The difficulty of producing MPO on a large scale hinders its study and utilization. We have produced recombinant MPO at a large scale and have characterized its antimicrobial activities. Most importantly, recombinant MPO significantly reduced the morbidity and mortality of murine pneumonia induced by Pseudomonas aeruginosa or methicillin-resistant Staphylococcus aureus. Our data suggest that recombinant MPO from human cells is a new class of antimicrobials with a broad spectrum of activity.


Subject(s)
Anti-Infective Agents/pharmacology , Peroxidase/pharmacology , Acute Disease , Animals , Anti-Infective Agents/classification , Anti-Infective Agents/therapeutic use , Anti-Infective Agents/toxicity , Candida albicans/drug effects , Drug Resistance, Bacterial , Escherichia coli/drug effects , Female , HEK293 Cells , Humans , Hydrogen Peroxide/toxicity , Male , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Mice, Inbred C57BL , Peroxidase/genetics , Peroxidase/therapeutic use , Peroxidase/toxicity , Pneumonia, Bacterial/drug therapy , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Recombinant Proteins/toxicity , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects
15.
Front Immunol ; 12: 714833, 2021.
Article in English | MEDLINE | ID: covidwho-1506100

ABSTRACT

Background: The most severe cases of Coronavirus-Disease-2019 (COVID-19) develop into Acute Respiratory Distress Syndrome (ARDS). It has been proposed that oxygenation may be inhibited by extracellular deoxyribonucleic acid (DNA) in the form of neutrophil extracellular traps (NETs). Dornase alfa (Pulmozyme, Genentech) is recombinant human deoxyribonuclease I that acts as a mucolytic by cleaving and degrading extracellular DNA. We performed a pilot study to evaluate the effects of dornase alfa in patients with ARDS secondary to COVID-19. Methods: We performed a pilot, non-randomized, case-controlled clinical trial of inhaled dornase for patients who developed ARDS secondary to COVID-19 pneumonia. Results: Improvement in arterial oxygen saturation to inhaled fraction of oxygen ratio (PaO2/FiO2) was noted in the treatment group compared to control at day 2 (95% CI, 2.96 to 95.66, P-value = 0.038), as well as in static lung compliance at days 3 through 5 (95% CI, 4.8 to 19.1 mL/cmH2O, 2.7 to 16.5 mL/cmH2O, and 5.3 to 19.2 mL/cmH2O, respectively). These effects were not sustained at 14 days. A reduction in bronchoalveolar lavage fluid (BALF) myeloperoxidase-DNA (DNA : MPO) complexes (95% CI, -14.7 to -1.32, P-value = 0.01) was observed after therapy with dornase alfa. Conclusion: Treatment with dornase alfa was associated with improved oxygenation and decreased DNA : MPO complexes in BALF. The positive effects, however, were limited to the time of drug delivery. These data suggest that degradation of extracellular DNA associated with NETs or other structures by inhaled dornase alfa can be beneficial. We propose a more extensive clinical trial is warranted. Clinical Trial Registration: ClinicalTrials.gov, Identifier: NCT04402970.


Subject(s)
COVID-19 Drug Treatment , Deoxyribonuclease I/therapeutic use , Respiratory Distress Syndrome/drug therapy , SARS-CoV-2/physiology , Administration, Inhalation , Adult , Aged , Aged, 80 and over , Case-Control Studies , DNA/metabolism , Extracellular Traps/metabolism , Female , Humans , Male , Middle Aged , Oxygen Consumption/drug effects , Peroxidase/metabolism , Pilot Projects , Recombinant Proteins/therapeutic use , Young Adult
16.
Mol Med ; 27(1): 120, 2021 09 26.
Article in English | MEDLINE | ID: covidwho-1440900

ABSTRACT

BACKGROUND: Since fall 2019, SARS-CoV-2 spread world-wide, causing a major pandemic with estimated ~ 220 million subjects affected as of September 2021. Severe COVID-19 is associated with multiple organ failure, particularly of lung and kidney, but also grave neuropsychiatric manifestations. Overall mortality reaches > 2%. Vaccine development has thrived in thus far unreached dimensions and will be one prerequisite to terminate the pandemic. Despite intensive research, however, few treatment options for modifying COVID-19 course/outcome have emerged since the pandemic outbreak. Additionally, the substantial threat of serious downstream sequelae, called 'long COVID' and 'neuroCOVID', becomes increasingly evident. Among candidates that were suggested but did not yet receive appropriate funding for clinical trials is recombinant human erythropoietin. Based on accumulating experimental and clinical evidence, erythropoietin is expected to (1) improve respiration/organ function, (2) counteract overshooting inflammation, (3) act sustainably neuroprotective/neuroregenerative. Recent counterintuitive findings of decreased serum erythropoietin levels in severe COVID-19 not only support a relative deficiency of erythropoietin in this condition, which can be therapeutically addressed, but also made us coin the term 'hypoxia paradox'. As we review here, this paradox is likely due to uncoupling of physiological hypoxia signaling circuits, mediated by detrimental gene products of SARS-CoV-2 or unfavorable host responses, including microRNAs or dysfunctional mitochondria. Substitution of erythropoietin might overcome this 'hypoxia paradox' caused by deranged signaling and improve survival/functional status of COVID-19 patients and their long-term outcome. As supporting hints, embedded in this review, we present 4 male patients with severe COVID-19 and unfavorable prognosis, including predicted high lethality, who all profoundly improved upon treatment which included erythropoietin analogues. SHORT CONCLUSION: Substitution of EPO may-among other beneficial EPO effects in severe COVID-19-circumvent downstream consequences of the 'hypoxia paradox'. A double-blind, placebo-controlled, randomized clinical trial for proof-of-concept is warranted.


Subject(s)
COVID-19 Drug Treatment , COVID-19/complications , Erythropoietin/genetics , Hypoxia/drug therapy , Lung/drug effects , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Erythropoietin/analogs & derivatives , Erythropoietin/therapeutic use , Humans , Hypoxia/genetics , Hypoxia/pathology , Hypoxia/virology , Lung/pathology , Lung/virology , Pandemics , Recombinant Proteins/genetics , Recombinant Proteins/therapeutic use , SARS-CoV-2/drug effects , Post-Acute COVID-19 Syndrome
17.
Front Immunol ; 12: 706186, 2021.
Article in English | MEDLINE | ID: covidwho-1394759

ABSTRACT

BACKGROUND: Sargramostim [recombinant human granulocyte-macrophage colony-stimulating factor (rhu GM-CSF)] was approved by US FDA in 1991 to accelerate bone marrow recovery in diverse settings of bone marrow failure and is designated on the list of FDA Essential Medicines, Medical Countermeasures, and Critical Inputs. Other important biological activities including accelerating tissue repair and modulating host immunity to infection and cancer via the innate and adaptive immune systems are reported in pre-clinical models but incompletely studied in humans. OBJECTIVE: Assess safety and efficacy of sargramostim in cancer and other diverse experimental and clinical settings. METHODS AND RESULTS: We systematically reviewed PubMed, Cochrane and TRIP databases for clinical data on sargramostim in cancer. In a variety of settings, sargramostim after exposure to bone marrow-suppressing agents accelerated hematologic recovery resulting in fewer infections, less therapy-related toxicity and sometimes improved survival. As an immune modulator, sargramostim also enhanced anti-cancer responses in solid cancers when combined with conventional therapies, for example with immune checkpoint inhibitors and monoclonal antibodies. CONCLUSIONS: Sargramostim accelerates hematologic recovery in diverse clinical settings and enhances anti-cancer responses with a favorable safety profile. Uses other than in hematologic recovery are less-well studied; more data are needed on immune-enhancing benefits. We envision significantly expanded use of sargramostim in varied immune settings. Sargramostim has the potential to reverse the immune suppression associated with sepsis, trauma, acute respiratory distress syndrome (ARDS) and COVID-19. Further, sargramostim therapy has been promising in the adjuvant setting with vaccines and for anti-microbial-resistant infections and treating autoimmune pulmonary alveolar proteinosis and gastrointestinal, peripheral arterial and neuro-inflammatory diseases. It also may be useful as an adjuvant in anti-cancer immunotherapy.


Subject(s)
COVID-19/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Immunologic Factors/therapeutic use , Immunotherapy , Neoplasms/drug therapy , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Humans , Recombinant Proteins/immunology , Recombinant Proteins/therapeutic use , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
18.
Acta Physiol (Oxf) ; 231(1): e13513, 2021 01.
Article in English | MEDLINE | ID: covidwho-1388186

ABSTRACT

The renin angiotensin system (RAS) plays an important role in the pathogenesis of variety of diseases. Targeting the formation and action of angiotensin II (Ang II), the main RAS peptide, has been the key therapeutic target for last three decades. ACE-related carboxypeptidase (ACE2), a monocarboxypeptidase that had been discovered 20 years ago, is one of the catalytically most potent enzymes known to degrade Ang II to Ang-(1-7), a peptide that is increasingly accepted to have organ-protective properties that oppose and counterbalance those of Ang II. In addition to its role as a RAS enzyme ACE2 is the main receptor for SARS-CoV-2. In this review, we discuss various strategies that have been used to achieve amplification of ACE2 activity including the potential therapeutic potential of soluble recombinant ACE2 protein and novel shorter ACE2 variants.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/therapy , Genetic Therapy , Receptors, Virus , SARS-CoV-2/pathogenicity , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/therapeutic use , Animals , COVID-19/enzymology , COVID-19/genetics , COVID-19/virology , Enzyme Activation , Enzyme Activators/therapeutic use , Gene Amplification , Host-Pathogen Interactions , Humans , Receptors, Virus/genetics , Receptors, Virus/metabolism , Receptors, Virus/therapeutic use , Recombinant Proteins/therapeutic use
19.
Int J Mol Sci ; 22(17)2021 Aug 25.
Article in English | MEDLINE | ID: covidwho-1376841

ABSTRACT

In recent years, enzymes have risen as promising therapeutic tools for different pathologies, from metabolic deficiencies, such as fibrosis conditions, ocular pathologies or joint problems, to cancer or cardiovascular diseases. Treatments based on the catalytic activity of enzymes are able to convert a wide range of target molecules to restore the correct physiological metabolism. These treatments present several advantages compared to established therapeutic approaches thanks to their affinity and specificity properties. However, enzymes present some challenges, such as short in vivo half-life, lack of targeted action and, in particular, patient immune system reaction against the enzyme. For this reason, it is important to monitor serum immune response during treatment. This can be achieved by conventional techniques (ELISA) but also by new promising tools such as microarrays. These assays have gained popularity due to their high-throughput analysis capacity, their simplicity, and their potential to monitor the immune response of patients during enzyme therapies. In this growing field, research is still ongoing to solve current health problems such as COVID-19. Currently, promising therapeutic alternatives using the angiotensin-converting enzyme 2 (ACE2) are being studied to treat COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/therapeutic use , COVID-19 Drug Treatment , Enzyme Therapy/methods , Recombinant Proteins/therapeutic use , Angiotensin-Converting Enzyme 2/pharmacology , Clinical Trials, Phase II as Topic , Drug Compounding/methods , Enzyme Stability , Enzyme Therapy/history , Enzyme Therapy/trends , Half-Life , History, 20th Century , History, 21st Century , Humans , Recombinant Proteins/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Treatment Outcome , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL